Comparative imaging study in ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom.
نویسندگان
چکیده
PURPOSE A range of anatomically realistic multimodality renal artery phantoms consisting of vessels with varying degrees of stenosis was developed and evaluated using four imaging techniques currently used to detect renal artery stenosis (RAS). The spatial resolution required to visualize vascular geometry and the velocity detection performance required to adequately characterize blood flow in patients suffering from RAS are currently ill-defined, with the result that no one imaging modality has emerged as a gold standard technique for screening for this disease. METHODS The phantoms, which contained a range of stenosis values (0%, 30%, 50%, 70%, and 85%), were designed for use with ultrasound, magnetic resonance imaging, x-ray computed tomography, and x-ray digital subtraction angiography. The construction materials used were optimized with respect to their ultrasonic speed of sound and attenuation coefficient, MR relaxometry (T1, T2) properties, and Hounsfield number/x-ray attenuation coefficient, with a design capable of tolerating high-pressure pulsatile flow. Fiducial targets, incorporated into the phantoms to allow for registration of images among modalities, were chosen to minimize geometric distortions. RESULTS High quality distortion-free images of the phantoms with good contrast between vessel lumen, fiducial markers, and background tissue to visualize all stenoses were obtained with each modality. Quantitative assessments of the grade of stenosis revealed significant discrepancies between modalities, with each underestimating the stenosis severity for the higher-stenosed phantoms (70% and 85%) by up to 14%, with the greatest discrepancy attributable to DSA. CONCLUSIONS The design and construction of a range of anatomically realistic renal artery phantoms containing varying degrees of stenosis is described. Images obtained using the main four diagnostic techniques used to detect RAS were free from artifacts and exhibited adequate contrast to allow for quantitative measurements of the degree of stenosis in each phantom. Such multimodality phantoms may prove useful in evaluating current and emerging US, MRI, CT, and DSA technology.
منابع مشابه
Preclinical multimodality phantom design for quality assurance of tumor size measurement
BACKGROUND Evaluation of changes in tumor size from images acquired by ultrasound (US), computed tomography (CT) or magnetic resonance imaging (MRI) is a common measure of cancer chemotherapy efficacy. Tumor size measurement based on either the World Health Organization (WHO) criteria or the Response Evaluation Criteria in Solid Tumors (RECIST) is the only imaging biomarker for anti-cancer drug...
متن کاملA multimodality vascular imaging phantom of an abdominal aortic aneurysm with a visible thrombus.
PURPOSE With the continuous development of new stent grafts and implantation techniques, it has now become technically feasible to treat abdominal aortic aneurysms (AAA) with challenging anatomy using endovascular repair with standard, fenestrated, or branched stent-grafts.In vitro experimentations are very useful to improve stent-graft design and conformability or imaging guidance for stent-gr...
متن کاملارزیابی و بررسی نتایج حاصل از داپلر فراصوتی در مقایسه با آنژیوگرافی تفریقی دیجیتال در تشخیص تنگ شدگیهای شریان کاروتید داخلی
Introduction: Digital Subtraction Angiography (DSA) is the standard method for detection of carotid artery stenosis. This technique has high radiation dose. With the progress of imaging techniques, noninvasive or minimally invasive methods like the CT angiography, MR angiography and ultrasonography with Doppler or Duplex mode were applicable. This study aimed to evaluate and assesse the results...
متن کاملFabrication of New 3D Phantom for the measurement of Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion, an important parameter in neurology and oncology. The current study aimed to design and construct a new three-dimensional (3D) phantom using a 3D printer in order to measure geometric distortion and its 3D reproducibility. Material and Methods: In this study, a new phantom ...
متن کاملFabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 38 2 شماره
صفحات -
تاریخ انتشار 2011